Diffusion Approximations for the Maximum of a Per- Turbed Random Walk

نویسندگان

  • VICTOR F. ARAMAN
  • PETER W. GLYNN
  • P. W. GLYNN
چکیده

Consider a random walk S = (Sn : n ≥ 0) that is “perturbed” by a stationary sequence (ξn : n ≥ 0) to produce the process S = (Sn + ξn : n ≥ 0). This paper is concerned with developing limit theorems and approximations for the distribution of Mn = max{Sk + ξk : 0 ≤ k ≤ n} when the random walk has a drift close to zero. Such maxima are of interest in several modeling contexts, including operations management and insurance risk theory. The associated limits combine features of both conventional diffusion approximations for random walk and extreme value limit theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Stochastic diffusion processes on Cartesian meshes

Diffusion of molecules is simulated stochastically by letting them jump between voxels in a Cartesian mesh. The jump coefficients are first derived using finite difference, finite element, and finite volume approximations of the Laplacian on the mesh. An alternative is to let the first exit time for a molecule in random walk in a voxel define the jump coefficient. Such coefficients have the adv...

متن کامل

Complete Corrected Diffusion Approximations for the Maximum of a Random Walk

Consider a random walk (Sn :n ≥ 0) with drift −μ and S0 = 0. Assuming that the increments have exponential moments, negative mean, and are strongly nonlattice, we provide a complete asymptotic expansion (in powers of μ> 0) that corrects the diffusion approximation of the all time maximum M =maxn≥0 Sn. Our results extend both the first-order correction of Siegmund [Adv. in Appl. Probab. 11 (1979...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

Diffusion Approximations

In this chapter, we shall give an overview of some of the basic applications of the theory of diffusion approximations to operations research. A diffusion approximation is a technique in which a complicated and analytically intractable stochastic process is replaced by an appropriate diffusion process. A diffusion process is a (strong) Markov process having continuous sample paths. Diffusion pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004